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Climate change vulnerability assessments are an important tool for understanding the 
threat that climate change poses to species and populations, but do not generally yield 
insight into the spatial variation in vulnerability throughout a species’ habitat. We 
demonstrate how to adapt the method of ecological-niche factor analysis (ENFA) to 
objectively quantify aspects of species sensitivity to climate change. We then expand 
ENFA to quantify aspects of exposure and vulnerability to climate change as well, 
using future projections of global climate models. This approach provides spatially-
explicit insight into geographic patterns of vulnerability, relies only on readily-available 
spatial data, is suitable for a wide range of species and habitats, and invites comparison 
between different species. We apply our methods to a case study of two species of 
montane mammals, the American pika Ochotona princeps and the yellow-bellied 
marmot Marmota flaviventris.

Keywords: climate change, ecological-niche factor analysis (ENFA), exposure, 
Marmota flaviventris, Ochotona princeps, sensitivity, vulnerability, vulnerability 
assessment

Introduction

The risk of extinction due to climate change is a significant threat to many species, 
and is a crisis of global scale (Field  et  al. 2014). Identifying species vulnerable to 
climate change and the extent of their vulnerability is vital for guiding effective 
conservation efforts (Stanton et al. 2015). There are presently more than 1.6 million 
known species of plants and animals whose global conservation status have not yet 
been assessed, along with countless millions more ‘unknown unknowns’ (Mora et al. 
2011, Roskov et al. 2014, IUCN 2017), largely due to a lack of relevant biological and 
ecological data. How are we to assess climate vulnerability when we are faced with a 
dearth of information? Moreover, how can we assess vulnerability in a timely manner 
to help facilitate preventative conservation measures that better anticipate risk than 
traditional diagnostic approaches?
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A common framework describes three fundamental 
aspects of climate change vulnerability: sensitivity, the degree 
to which the persistence ability of a species is determined by 
the climatic conditions of its habitat; exposure, the extent to 
which the species will experience climate change across its 
range; and adaptive capacity, the ability to adapt to changes 
in climate, typically through evolutionary responses, disper-
sal, and phenotypic plasticity (Williams et al. 2008). Several 
different methods for assessing these three aspects have been 
proposed, and typically use trait-based species characteristics 
or climate-modeling approaches to derive coarse indices or 
categories of vulnerability (Thomas et al. 2011, Young et al. 
2012, Foden et al. 2013).

Prior to and seemingly unrelated to these more recent 
approaches to assessing climate vulnerability, Hirzel  et  al. 
(2002) introduced ecological-niche factor analysis (ENFA), 
a method of quantifying the environmental niche of a spe-
cies using presence-only data. ENFA has since become a 
popular tool and has been applied to many types of organ-
isms, including mammals (De Knegt  et  al. 2011), birds 
(Loiselle et al. 2010), amphibians (Soares and Brito 2006), 
and plants (Engler et al. 2004). Although Hirzel et al. (2002) 
suggested a method for inter-species comparison, few studies 
have used ENFA to analyze more than one species at a time 
(but see Reutter et al. 2003, Sattler et al. 2007). It is unclear 
precisely why, but we are unaware of any studies that draw an 
explicit conceptual link between ENFA and other methods 
of vulnerability comparison. As such, we surmise that inter-
species comparison is simply an application of ENFA that is 
as yet poorly explored.

Here we demonstrate how ENFA can be adapted as a tool 
for assessing climate-change vulnerability, by providing a 
measure of species sensitivity to climate change. We further 
show how its methods can be expanded to infer a measure 
of exposure to climate change from future climate projec-
tions. In contrast to other assessment methods, our approach 
yields spatially-explicit descriptions of climate vulnerability. 
Moreover, by relying solely on presence-only distribution 
data and readily-available climate models, our approach 
avoids the need for detailed life history knowledge and 
absence data, and can be employed rapidly for a wide variety 
of species, and in a manner that invites direct comparison of 
results for different species. We provide a case study that con-
trasts the climate vulnerability of two species: the American 
pika Ochotona princeps, a small lagomorph with a well-docu-
mented sensitivity to climate change, and the yellow-bellied 
marmot Marmota flaviventris, a larger sympatric rodent.

Methods

Hutchinson (1957) described the ecological niche of a 
species as an n-dimensional hypervolume embedded in 
the n-dimensional space defined by n ecological variables. 
ENFA quantifies this niche by comparing the distribution 
of a species in ecological-space with the larger distribution of 

available habitat conditions, referred to as the global distribu-
tion. The species’ niche is primarily described by two quanti-
ties: the marginality reflects the location of the species’ niche 
in ecological-space relative to the global distribution, and the 
specialization reflects the size of the species’ niche relative to 
the size of the global distribution. We direct the reader to 
Hirzel et al. (2002) and Basille et al. (2008) for more thor-
ough details on the ENFA process, and to Supplementary 
material Appendix 1 for a more explicit treatment of our 
approach. Here we will briefly introduce the concepts 
necessary to develop the remaining portions of this paper.

Marginality

For a set of standardized P environmental rasters with  
N cells each, let Z denote the N × P matrix such that zij is the 
standardized value of variable j at location i. The P × P global 
covariance matrix is

R
1

Z ZG
T=

N
  (1)

We define a unit vector p of length N that represents habitat 
utilization by the proportion of presence locations in each cell. 
The marginalities of P variables may be succinctly written as

m Z D 1T
p= N   (2)

where 1N is a vector of ones of length N. The vector m of 
length P is called the marginality factor. An illustration of 
a two-dimensional example of m can be seen in Fig. 1a. We 
may calculate an overall marginality M from the marginality 
factor m, which we define as

M ≡ m mT   (3)

M can be interpreted as the distance between the centroid of 
the species’ niche and the centroid of the global niche.

Specialization and sensitivity

For a single ecological variable, Hirzel et al. (2002) defined 
the specialization as

s G

S

=
σ
σ

  (4)

where σG is the standard deviation of the global distribution, 
and σS is the standard deviation of the species distribution. 
Generalizing to multiple dimensions, the species covariance 
matrix RS weighted by utilization is given by

R Z m D Z mpS
T T T1 1= −( ) −( )N N   (5)
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with Dp = Diag(p) as before. ENFA finds the P − 1 unit 
vectors u that maximize the ratio

u R u
u R u

G

S

T

T   (6)

such that each vector uj is orthogonal to m. Each vector uj is 
called a specialization factor, and has an associated eigenvalue 
λj that describes the amount of specialization expressed on 
that axis.

Different approaches have been suggested for calculating 
an overall index of specialization S (Hirzel et al. 2002, Bryan 
and Metaxas 2007), which generally involve a sum of the 
eigenvalues λj. We see two shortcomings of these approaches. 
First, they neglect to account for the amount of specializa-
tion that is expressed on the marginality axis, and thus yield 
an incomplete measure of specialization (Basille et al. 2008). 
The marginality axis necessarily reflects some amount of spe-
cialization, since a species with higher marginality will have 
a more constrained habitat. The amount of specialization on 
the marginality axis is the ratio of the variances of the avail-
able habitat to the used habitat projected onto m, given by

λm = m R m
m R m

G

S

T

T   (7)

Second, by measuring the amount of specialization in the 
ENFA factors, this notion of overall specialization is at 

odds with the notion of overall marginality, which reflects 
the amount of marginality in each of the environmental 
variables. We outline a different approach to quantifying the 
overall specialization that addresses these two issues.

First, we collect λm and λj together and rename them such 
that (λm, λ1, …, λP−1) = (ρ1, ρ1, …, ρP). Next, let the columns 
of the P × P matrix U be comprised of the niche factors, 
such that

U m u u= −( , , , )1 1… P   (8)

Since m itself expresses some amount of specialization, each 
component ujk of U describes the amount of influence the 
environmental variable j has on the shape of the species’ 
ecological niche in factor k. The higher the value of ujk, 
the more restricted the range of the species is in variable j 
in factor k. We define a left stochastic matrix V with each 
column summing to 1, such that

v
u

u
jk

jk

jkj

P=
=∑

| |

1

  (9)

It follows that, for a given environmental variable j, the 
quantity

s vj
k

P

jk k= ∑
=1

ρ   (10)
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Figure 1. (a) A hypothetical representation of the ecological niche in two uncorrelated climate dimensions. The species occupies a subset of 
the available habitat, which has been normalized in each dimension. Future changes in climate shift the climate conditions inside the his-
torical species habitat. The distance from the global centroid to the historical habitat centroid is the overall marginality M, with vector m 
describing the marginality in each dimension. The solid arrow illustrates the climate shift of a single location. (b) Decomposition of the 
climate shift of a single location. The absolute differences between the historical coordinates (z1, z2) and the future coordinates (g1, g2) are 
given by ( , ).f fZ Z1 2

 (c) and (d) are histograms of the sets of distances f fZ Z1 2
, across all locations. The means of these distances define the 

departure vector d = (d1, d2).
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reflects the total specialization found in variable j. If a species 
is highly constrained in j in the first few factors, for example, 
sj will be higher, since the first few factors account for most of 
the specialization. Conversely, if a population is highly con-
strained in j in only the last few factors, sj will be lower, since 
the last factors account for less specialization. The higher the 
value of sj, the more restricted the species’ range in variable j. 
We may calculate the total specialization found in each envi-
ronmental variable by

s = Vrr   (11)

We call s the sensitivity factor to distinguish it from other 
definitions of specialization, and note that

j

P

j m
j

P

js
=1 =1

1

∑ ∑= +
−

λ λ   (12)

From s, we may also calculate an overall index of sensitivity 
S as

S
P

s
j

P

j≡ ∑1

=1

  (13)

Quantifying sensitivity to climate change

In general, the higher the overall climate sensitivity of a spe-
cies, the smaller the climatic niche that the species inhabits. 
If a species only tolerates a narrow range of climatic condi-
tions, we may reasonably expect it to be more sensitive to 
the effects of climate change than a species that is capable of 
thriving in a wider range of conditions. Thus, when our P 
environmental variables are all climate variables, the sensitiv-
ity factor s of a species is a direct reflection of its sensitivity in 
each climate dimension. The overall sensitivity S reflects the 
average specialization in each variable, and provides a useful 
measure for comparison between species, provided the same 
reference study area is used.

The matrix S comprised of environmental data in locations 
of species presence can be projected onto the sensitivity axis, 
with coordinates inside the habitat given by σs = 1/P(|S − m|s) 
and coordinates of the study area given by σG = 1/P(|Z − m|s). 
A location i of greater climatic extreme relative to mean habi-
tat conditions will have a larger σi, and a location closer to the 
species’ climatic means will have a smaller σi.

Quantifying exposure to climate change

Climate models are frequently used to predict the extent 
and magnitude of climate change over the coming century. 
The differences between present and future conditions inside 
present-day habitat reflect the amount of climate change a 
species might experience if it remains in place. Using his-
torical climate data and future climate predictions, we use 

a dissimilarity measure as a metric of species exposure to 
climate change.

As before, let zij represent the scaled historical value of 
climate variable j at location i. Let gij be the predicted 
future value of variable j at location i that is also scale rela-
tive to historical values. We denote the absolute difference 
between G and Z as F, with fij = |gij − zij| (Fig. 1b). Weighting 
by habitat utilization, the average distance between a spe-
cies’ normalized future and historical habitat conditions in 
variable j is then

d p fj
i

N

i ij= ∑
=1

  (14)

or, in vector form,

d F D 1p= T
N   (15)

We call d the departure factor (Fig. 1c–d). The higher the 
value of dj, the greater the departure from historical con-
ditions in variable j. F projects onto the departure axis 
with coordinates δ = Fd, with larger values of δi indicating  
greater departure in location i. We calculate an overall 
departure D by

D ≡ d dT   (16)

D is a measure of the change between historical and future 
climate values within the species’ historical habitat. We 
note that D is not simply the distance between the histori-
cal and future centroids of the species due to the absolute 
value; this definition ensures that D > 0 whenever there is 
a change between future and historical values, regardless of 
whether the average difference is 0. D and δ are consistent 
with the concept of exposure in our climate change vulner-
ability framework, and as such, do not necessarily reflect 
the extent to which the changes in climate will affect the 
population.

Quantifying vulnerability to climate change

Putting aside the potential influence of adaptive capacity, vul-
nerability to climate change reflects the interaction between 
sensitivity and exposure to climate change. The geometric 
mean

v d sj j j= +( )1   (17)

then, can be interpreted as a measure of the vulnerability of 
the population in variable j. Larger values of sj and dj indicate 
higher climate specialization and departure, respectively, 
which result in a larger vj, indicating higher vulnerability 
in variable j. Conversely, smaller values of either sj or dj will 
result in a smaller vj. No departure and no sensitivity results 
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in vj = 1. The vulnerability for each climate variable is given by 
the vulnerability factor v, written as

v D Vd 1= ( )+ rr
1
2   (18)

where Dd+1 = Diag(d + 1). The vulnerability axis with coordi-
nates ν is calculated by

ν δ σi i i=   (19)

We define the overall vulnerability as

V
P

v
j

P

j≡ ∑1

=1

  (20)

Equation 17 gives equal weight to the influence of sensitivity 
and exposure, but this need not be the case. More generally, 
we may use the weighted geometric mean

v d sj j
m

j
n m n= +( ) +( )1

1
  (21)

with m and n reflecting the relative weights of exposure and 
sensitivity, respectively. The coordinates on the vulnerability 
axis ν then become

ν δ σi i
m

i
n m n= ( ) +

1

  (22)

Implementation in R

Rinnan (2018) authored the ‘CENFA’ R package to provide 
tools to implement the methods that we have outlined here. 
The ‘CENFA’ package is available on the CRAN reposi-
tory at <https://CRAN.R-project.org/package=CENFA>. 
It is designed to work with spatial data directly – includ-
ing raster, shapefile, and point data formats – and to handle  
large datasets efficiently via partial data loading and 
parallelization.

Case study: applications to the American 
pika and the yellow-bellied marmot

The American pika Ochotona princeps is a small lagomorph 
that inhabits talus and scree slopes throughout mountain 
ranges in western North America, and some lower-elevation 
habitat in rocky sections of waterways such as the Columbia 
River Gorge. Pikas are quite sensitive to high tempera-
tures, and are widely recognized as being threatened by cli-
mate change due to loss of habitat associated with warming 

(Moritz  et  al. 2008, Erb  et  al. 2011). Despite evidence of 
range contraction and population declines (Beever  et  al. 
2003), the IUCN’s Red List of threatened species database 
presently categorizes the American pika as a species of Least 
Concern (IUCN 2017).

The yellow-bellied marmot Marmota flaviventris shares 
considerable habitat overlap with the American pika, but 
any sensitivity to climate change is less evident. One simple 
explanation for this is that marmots hibernate and pikas do 
not, and perhaps marmots are therefore less impacted by cli-
mate change that takes place during hibernation. Although 
climate-related phenological shifts in hibernation emergence 
and body size have been documented (Inouye  et  al. 2000, 
Armitage 2013), there is concomitant evidence of increases in 
survival rates, body size, and population (Ozgul et al. 2010). 
The IUCN’s Red List also categorizes this species of marmot 
as one of Least Concern, with no major recognized threats 
(IUCN 2017).

For our analysis, we used climate datasets consisting of 
bioclimate variables (Table 1) at a 30 arc-second resolution 
(~1 km) from the WorldClim database (Hijmans et al. 2005). 
We chose 10 of the 19 bioclimate variables to represent a 
broad range of seasonal and annual climatic patterns across 
the study area while minimizing redundancy. The historical 
dataset was based on climate records averaged from 1960 to 
1990. Future projections for 2050 (averages from 2041 to 
2060) were derived from the MIROC5 global climate model 
for two different representative concentration pathways 
(RCP4.5 and RCP8.5) (Stocker 2014). Digital maps of pika 
and marmot habitat were obtained from the IUCN’s Red List 
of threatened species database (IUCN 2017) and rasterized 
to the same resolution as the climate data. We interpreted 
these habitat rasters as presence data with equal utilization 
weights for all cells in which the species were present. The 
global study area was cropped to the union of the extent of 
the two species’ ranges. All data processing and analysis was 
done in R ver. 3.5.1 (<www.r-project.org>).

Relative to the study area, pika habitat is much cooler 
during the warm seasons, receives considerably more pre-
cipitation during the dry season, and experiences less tem-
perature fluctuation (see the marginality factor in Table 2a). 
Pikas are most sensitive to variables associated with seasonal 
temperature extremes, daily temperature fluctuations, and 
the amount of precipitation in the wettest periods (sensitiv-
ity factor in Table 2a). An overall marginality M of 1.840 
shows that pika habitat is substantially different from the 
mean climate conditions in the study area, and an overall 
sensitivity S of 2.111 shows that the range of pika’s toler-
able climate conditions are quite restricted, with the greatest 
sensitivity to hot and cold temperature extremes. Although 
pikas appear relatively sensitive to changes in mean diur-
nal temperature range (MDR), the MDR departure was 
quite small, leading to moderate MDR vulnerability. 
Conversely, although there was substantial departure in 
precipitation seasonality (PS), pikas showed a low sensitiv-
ity to PS, and so overall PS vulnerability was relatively low. 
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Pikas appear most vulnerable to thermal extremes in the 
hottest and coldest months (HMmax and CMmin), reflecting 
their well-documented sensitivity to extreme temperatures 
(Moritz et al. 2008, Beever et al. 2011).

With an overall marginality M of 1.026, by con-
trast, marmot habitat is not appreciably different from 
the global means of the study area, but is generally char-
acterized by greater differences in the mean diurnal range, 
warmer extremes, and less precipitation during the wet 
season (Table 2b). An overall sensitivity S of 2.554, how-
ever, suggests a narrower climate-niche than pika, with the 
greatest restrictions in wet-season precipitation (PWM and 
PWQ) and cold-season temperature extremes (CMmin). 
These sensitivities agree with other characterizations of 

the yellow-bellied marmot’s climatic niche (Schwartz and 
Armitage 2005, Armitage 2013).

The RCP8.5 scenario had greater departure than the 
RCP4.5 scenario in almost every variable, reflecting 
the expected increase in climate change associated with  
the concentration of greenhouse gas emissions (Stocker 
2014). Overall pika departures D were 0.808 (RCP4.5) and 
0.944 (RCP8.5). This led to a higher overall vulnerability in 
the RCP8.5 scenario (V = 1.265) than the RCP4.5 scenario 
(V = 1.259). Vulnerability was calculated with Eq. 17, giving 
equal weights to sensitivity and exposure.

Marmots demonstrated even more vulnerability to 
thermal extremes than pikas, as a result of relatively high 
sensitivity and departure to HMmax and CMmin. Overall mar-
mot departures D were comparatively lower, with D = 0.774 
(RCP4.5) and 0.895 (RCP8.5). Despite this, marmots 
had slightly higher overall vulnerability than pikas in both 
scenarios, with V = 1.316 (RCP4.5) and 1.310 (RCP8.5).

We used the projected coordinates σ, δ, and ν to visualize 
spatial variation in sensitivity, exposure, and vulnerability 
for the RCP4.5 scenario, both within species habitat (Fig. 2) 
and for the entire study area (Fig. 3). The most vulnerable 
current pika habitat appears in the Cascades, the northern 
Rockies, and the Great Basin region, corresponding with 
observations of high rates of extirpation and habitat loss 
(Beever  et  al. 2011). The most vulnerable current marmot 
habitat is located throughout the Cascades, the Great Basin, 
and an isolated population in the Badlands of South Dakota. 
Predictions suggest that regions adjacent to the Canadian 

Table 1. Bioclimatic variables used for this study, obtained from the 
WorldClim database (Hijmans  et  al. 2005), and derived from 
monthly measurements of temperature and precipitation.

HMmax max temp of warmest month (°C)
CMmin min temp of coldest month (°C)
PS precip seasonality (SD/mean monthly precip)
TS temp seasonality (SD monthly temp × 100)
PWM precip of wettest month (mm)
PDM precip of driest month (mm)
PWQ precip of wettest quarter (mm)
PDQ precip of driest quarter (mm)
MDR mean diurnal range (mean of monthly max 

temp − min temp)
ISO isothermality (MDR/(HMmax − CMmin) × 100)

Table 2. The first three CNFA factors for (a) O. princeps and (b) M. flaviventris, and the resulting sensitivity factors s, departure factors d, and 
vulnerability factors v, calculated for 2050 MIROC5 GCM projections under two different RCPs (4.5 and 8.5). Bioclimate variables are listed 
in decreasing magnitude of the coefficients of v. Bold values indicate the five coefficients with the largest magnitude in each column. The 
amount of specialization in each CNFA factor is in parentheses.

Bioclimate variable Marg. Spec. 1 Spec. 2 Sens. Dep. Dep. Vuln. Vuln.
(RCP4.5) (RCP8.5) (RCP4.5) (RCP8.5)

(a) Ochotona princeps (7.5%) (36.1%) (18.6%)
CMmin 0.05 0.66 0.36 2.74 0.34 0.43 1.92 1.98
HMmax −0.72 0.41 −0.31 2.39 0.48 0.61 1.88 1.96
PWM 0.22 −0.04 −0.38 2.23 0.23 0.22 1.65 1.66
PWQ 0.23 0.10 0.38 2.24 0.19 0.20 1.63 1.64
ISO 0.25 0.37 −0.52 2.31 0.11 0.11 1.60 1.60
MDR −0.19 −0.44 0.46 2.33 0.07 0.08 1.58 1.59
PDQ 0.93 −0.08 0.08 1.68 0.19 0.21 1.42 1.43
PDM 0.93 0.04 −0.07 1.55 0.27 0.29 1.40 1.41
TS −0.63 −0.21 0.01 1.84 0.06 0.07 1.40 1.41
PS −0.74 −0.06 0.05 1.39 0.29 0.31 1.34 1.35

(b) Marmota flaviventris (9.3%) (27.3%) (19.6%)
CMmin 0.20 −0.30 0.57 3.03 0.39 0.47 2.05 2.11
HMmax 0.28 0.28 −0.39 2.76 0.51 0.62 2.05 2.12
PWM −0.35 0.51 −0.22 3.18 0.13 0.12 1.89 1.89
PWQ −0.34 −0.44 0.26 3.08 0.09 0.10 1.83 1.84
ISO 0.38 0.38 −0.44 2.66 0.14 0.15 1.74 1.75
MDR 0.52 −0.30 0.43 2.71 0.12 0.13 1.74 1.75
PDQ −0.08 −0.26 −0.08 2.16 0.10 0.11 1.54 1.55
PDM −0.08 0.27 0.11 2.00 0.17 0.17 1.53 1.53
TS −0.25 −0.06 0.12 1.96 0.07 0.07 1.45 1.45
PS −0.46 −0.01 0.03 1.37 0.29 0.29 1.33 1.33
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Rockies may provide suitable refuge from climate change for 
pika, but less so for marmots. In contrast, climate refuge in 
eastern Colorado and isolated patches of the southwest will 
likely be more amenable to marmots than pikas.

Discussion

Climate–niche factor analysis (CNFA) quantifies different 
aspects of the climatic niche of a species. There are several 
other such factor analysis methods that have been used to 
describe environmental niches, including the MADIFA, a 
factorial decomposition based on the Mahalanobis distance 
(Calenge et al. 2008), and the GNESFA, which provides a 
generalized framework of niche factor analysis (Calenge and 
Basille 2008). The differences between these approaches arise 
primarily from how the species data are transformed rela-
tive to the reference habitat. CNFA could likely be adapted 
to these other factor analyses as well, but we have not yet 
explored this possibility. For the purposes of inter-species 

comparisons, however, we recommend using a framework 
that centers the data on the shared reference habitat to bet-
ter facilitate direct comparison, such as CNFA or FANTER, 
a similar factor analysis method for multimodal niches 
(Calenge and Basille 2008).

There are several important distinctions between CNFA 
and ENFA. First, traditional implementations of ENFA 
may incorrectly calculate the amount of specialization on 
the marginality axis due to an error in the formulation of 
the species covariance matrix (Supplementary material 
Appendix 1). Fortunately, this is easily fixable. Second, the 
sensitivity factor s as we’ve defined it provides a fundamen-
tally different characterization of specialization than the 
ENFA’s specialization factor. The sensitivity factor expresses 
the amount of specialization in each climate dimension, 
rather than the amount in each factor, making it more directly 
analogous to the marginality factor. It also does not neglect 
to account for the amount of specialization on the marginal-
ity axis. We maintain that this provides a more meaningful, 
intuitive, and useful measure of climate sensitivity. Finally, 
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Figure 2. (a) Sensitivity, (b) exposure and (c) vulnerability across the habitat of O. princeps, and (d) sensitivity, (e) exposure, and (f ) vulner-
ability across the habitat of M. flaviventris for the MIROC5 RCP4.5 climate scenario. Sensitivity values are given by σs = 1/P(|S − m|s); 
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CNFA provides a novel method for quantifying exposure to 
climate change by applying the factor analysis to future cli-
mate scenarios.

The IUCN Red List’s criteria for conservation assess-
ment have been criticized for not adequately accounting 
for climate-related threats to species (Thomas  et  al. 2004, 
Thuiller et al. 2005). A formal assessment of extinction risk is 
often a necessary step to give a species the recognition it needs 
to kickstart conservation actions, but this can be a slow pro-
cess. By the time criteria such as population decline or range 
contraction are directly observable at a population level, it 
may already be too late for meaningful and effective conser-
vation actions (Hannah 2011). At a minimum, vulnerable 
species must be identified as early as possible to maximize 
the chances for successful conservation (Stanton et al. 2015). 
One of the strengths of our approach is the ability to iden-
tify and describe aspects of climate sensitivity and exposure 
to climate change with relatively little information about the 
species itself. This enables us to more proactively identify spe-
cies of highest climate vulnerability and species in need of 

immediate conservation actions. Moreover, CNFA provides a 
formal method for inter-species comparison, which could be 
used to prioritize species assessments.

The American pika is an example of a species with a well-
documented sensitivity to climate change. Our case study 
found that yellow-bellied marmots have a narrower climate-
niche than pikas, which suggests that they may in fact be 
more sensitive to climate change than pikas. One possible 
explanation for this is that marmots only find a narrow range 
of climatic conditions suitable for hibernation, supported 
by the observation that the three largest components of the 
marmot’s sensitivity factor are all associated with winter cli-
mate variables (CMmin, PWM, PWQ). Marmots will experi-
ence slightly less overall exposure to climate change within 
their habitat, though, and there is some evidence that this 
change may benefit the species (Ozgul et al. 2010). The cli-
mate vulnerability framework that we used to motivate our 
approach contained three fundamental axes. Depending on 
each species’ capacity to adapt to climate change via dispersal, 
rapid evolution or other processes, we would place them on 
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a spectrum between ‘at-risk adapters’ (i.e. highest adaptive 
capacity) and ‘highly vulnerable’ (i.e. low adaptive capacity) 
(Foden et al. 2013). Recommended actions involve monitor-
ing the populations and supporting adaptive responses, pri-
oritizing the geographic locations in which vulnerability is 
greatest. By identifying the climate dimensions of sensitivity 
and exposure, these actions can be directed toward the geo-
graphic locations of greatest vulnerability, which may better 
detect early signs of climate-related population impacts.

It is important to note, however, that by neglecting to 
include other ecological processes that shape habitat, our 
approach suffers from some of the shortcomings common to 
species distribution models (Lawler  et  al. 2006). One such 
issue is that our conclusions are based on an analysis of the 
realized niche of a species rather than its fundamental niche. 
Non-climatic constraints such as biotic interactions, dispersal 
ability, and landscape topography can prevent a species from 
populating habitat that is climatically suitable (Jiménez-
Valverde et al. 2008). Future novel climates might also favor 
a species, despite differing from the climate the species cur-
rently experiences (Fitzpatrick and Hargrove 2009). Another 
issue is that CNFA quantifies the magnitude of sensitivity 
and exposure, but not the direction. A habitat location i 
with high σi indicates a place of climatic extreme, but the 
vulnerability νi of i does not reflect whether the expected cli-
mate departure δi will shift toward or further away from the 
means. The direction of change can be derived from the raw 
climate values Z and G, but this is an area that needs further 
development.

Species with disjoint populations or localized adaptations 
to their environment may have multimodal environmental 
niches. An analysis that neglects differences in niche con-
straints of distinct subpopulations may underestimate the 
climate vulnerability of the species. In these cases, it may 
be more appropriate to perform an analysis at the subspe-
cies or subpopulation level. One such example is the spot-
ted owl Strix occidentalis, with three geographically distinct 
subspecies. At the species level CNFA would likely describe 
a much broader spotted owl climatic niche that stretches 
from southwestern British Columbia to the Sierra Madres in 
Mexico, ignoring the climatic adaptations of each subspecies. 
Similarly, overestimates of vulnerability may occur for highly 
mobile or migratory species that follow seasonal changes in 
climate.

CNFA only provides relative comparisons between 
species, not absolute. Determining thresholds of sensitivity or 
departure to categorize a species as low or high risk is highly 
contextual, and may differ greatly between taxa. As general 
rules of thumb, we suggest that inter-species comparisons 
are better suited to species that are more closely related to 
one another, and that vulnerability thresholds be assessed by 
species class or any more specific taxonomic rank.

Climate change affects species in myriad ways, and the 
same environmental stimuli can induce completely dif-
ferent responses in different species. Non-climatic pro-
cesses may impose constraints that correlate with climate 

variables, further obscuring accurate niche characterization. 
Fortunately, there is nothing about CNFA that intrinsically 
depends on climate, per se. It is readily possible to include 
non-climatic variables (e.g. soil type, human encroachment) 
as part of the analysis, provided one has future projections 
commensurate with the climate scenarios that are used to 
calculate vulnerability.

Finally, it is possible that CNFA simply provides an inad-
equate or incorrect characterization of climate vulnerability 
for some species due to issues of scale and uncertainty. There 
is often a large disparity between the range maps that delin-
eate species habitat and the distribution patterns of individu-
als contained therein (Hurlbert and Jetz 2007). The results 
of CNFA will necessarily preserve the uncertainty associated 
with the distribution data that was used for the analysis. 
Our examples for the American pika and the yellow-bellied 
marmot used range maps as a first step, but could be further 
refined by using point presence or abundance data, which 
provide more accurate descriptions of distribution patterns 
and habitat utilization. The foundation of CNFA would ben-
efit a great deal from further experiments of model validation, 
including applications to species in which climatic relation-
ships with habitat are already known (Kearney and Porter 
2009), and simulation studies in which the relationships are 
specified a priori. Likewise, the results will necessarily vary 
with the resolution and extent of analysis. More investigation 
is needed to examine the scale-dependence of CNFA.

A measure of caution, therefore, is appropriate when using 
CNFA to inform prescriptive actions. By no means do our 
methods claim to provide a comprehensive assessment of cli-
mate vulnerability. Adaptive capacity is an integral compo-
nent of overall vulnerability that CNFA does not attempt to 
address. Although much information can be inferred from 
spatial vulnerability maps, these inferences are only meaning-
ful as they relate to an organism’s ecology and natural history, 
for which there is no substitute.

When used in tandem with other assessment methods 
such as climatic niche models (Thomas et al. 2004) or trait-
based assessments (Foden et al. 2013), our approach can help 
provide a more complete, spatially-explicit picture of species 
vulnerability. CNFA can be used to highlight geographic 
regions of species vulnerability, inform resource management 
decisions, and direct conservation efforts. Incorporating our 
methods into IUCN conservation assessments and other 
vulnerability assessments may enhance our understand-
ing of species climate risks and facilitate the assessment of 
unevaluated species.
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