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Expanding the network of protected areas is a core strategy for conserving
biodiversity in the face of climate change. Here, we explore the impacts on
reserve network cost and configuration associated with planning for climate
change in the USA using networks that prioritize areas projected to be clima-
tically suitable for 1460 species both today and into the future, climatic
refugia and areas likely to facilitate climate-driven species movements. For
14% of the species, networks of sites selected solely to protect areas currently
climatically suitable failed to provide climatically suitable habitat in the
future. Protecting sites climatically suitable for species today and in
the future significantly changed the distribution of priority sites across the
USA—increasing relative protection in the northeast, northwest and central
USA. Protecting areas projected to retain their climatic suitability for species
cost 59% more than solely protecting currently suitable areas. Including all
climatic refugia and 20% of areas that facilitate climate-driven movements
increased the cost by another 18%. Our results indicate that protecting
some types of climatic refugia may be a relatively inexpensive adaptation
strategy. Moreover, although addressing climate change in conservation
plans will have significant implications for the configuration of networks,
the increased cost of doing so may be relatively modest.

This article is part of the theme issue ‘Climate change and ecosystems:
threats, opportunities and solutions’.
1. Introduction
Many species are shifting their distributions in ways that are consistent with pre-
dictions based on recent changes in climate [1–4]. As climate change progresses,
climate-induced range shifts are expected to increase [5,6]. These shifts have sig-
nificant ramifications for what is arguably one of the most effective conservation
strategies—protecting areas from development and other land-use conversions.
As species’ ranges shift, areas that have been protected to provide habitat for
those species may cease to contain suitable climatic conditions [7–9].

Several approaches to augmenting existing protected area networks to better
conserve biodiversity in the face of climate change have been proposed [10–13].
Two of the most recommended involve growing the network of protected areas,
by increasing either the size of existing reserves or the number of reserves [10].
The former could allow species to track suitable climatic conditions within exist-
ing protected areas. Increasing the number of reserves would provide additional
places for species to go as climates change—increasing the chances that a species
could track suitable climatic conditions.
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Table 1. Description of five types of reserve networks selected to augment current protected areas using different approaches to address climate change.

network targets approach

current

species

current species distributions protect areas projected to be suitable for species today

species

refugia

species-specific refugia protect areas projected to be suitable for species today and into the future

climatic

refugia

current species distributions and

climatic refugia

protect areas projected to be currently suitable for species and climate analogues with

shrinking geographical footprints

connectivity current species distributions and

climate corridors

protect areas projected to be currently suitable for species and areas with corridors

designed to facilitate climate-driven movements

all species-specific refugia, climatic

refugia and climate corridors

protect areas projected to be currently suitable for species, climate analogues with

shrinking geographical footprints, and corridors designed to facilitate climate-driven

movements
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Yet, to be most effective, reserve network expansions must
be implemented strategically. A number of approaches to
addressing species needs in an expanded reserve network
have been proposed [14]. One such approach that has recently
received much attention is protecting so-called refugia
[15–17]. There is ample evidence of historical climatic macro-
refugia [18,19], regions of a continent that facilitate the
persistence of species in the face of large-scale, sustained, cli-
matic change [20]. As a result, researchers have developed
several approaches for identifying potential macrorefugia for
modern climate change, including areas where specific
species are projected to persist in the future [21], where cli-
mate velocities are low [17], where little climatic change is
expected [22], where environmental diversity is high [17],
and areas that retain increasingly rare climatic conditions [23].

In addition to expanding the reserve network, another
often-recommended strategy for addressing climate impacts
on biodiversity involves increasing the connectivity of the
landscape [10]. By making it easier for plants and animals
to move from place to place, increasing connectivity may
allow more species to track suitable climatic conditions,
particularly in human-dominated landscapes. The benefits
of a larger network will be limited if species are unable to
move from their current locations to suitable areas in the
future. Although the idea of increasing connectivity to pro-
tect biodiversity is not new, few studies have developed
connectivity-planning approaches that directly address
climate-driven movements [24,25].

Despite the wealth of suggestions for addressing climate
change in conservation planning, relatively few studies
have tested the impact of incorporating these approaches
into the conservation-planning process [26]—and even
fewer have explored the effects of more than one approach
at a time [27]. Here, we explore the effects of addressing
climate change on both the configuration and the cost of a
national protected area network using three such approaches.
We selected sites to augment current protected areas in the
USA using different combinations of areas projected to be
currently climatically suitable for species, areas projected to
be climatically suitable for species in the future, potential cli-
mate refugia and areas important for increasing connectivity
to facilitate climate-driven movements. We compared both
the distributions and estimated relative costs of the resulting
new networks.
2. Methods
(a) Networks
To explore the effect of applying each of the three approaches to
addressing climate change on network cost and configuration,
we selected five sets of networks to augment the current pro-
tected areas in the USA to meet five different goals (table 1).
First, we selected sites to protect currently climatically suitable
areas for plants and vertebrates. Second, we selected sets of
sites that protected species-specific refugia. These networks pro-
tected sites that were projected to be climatically suitable for
species both today and into the future. Third, we selected net-
works that protected currently climatically suitable areas for
species and areas of potential climatic macrorefugia—locations
that retain increasingly rare climatic conditions. Fourth, we
selected networks that protected currently climatically suitable
areas for species and areas identified as providing connecti-
vity to facilitate climate-driven species movements (hereafter
climate corridors). Finally, we selected networks that protected
species-specific refugia, climatic refugia and climate corridors
(i.e. combining the second, third and fourth goals).
(b) Sites
We developed a grid of 78 412 10 km× 10 km cells to represent
potential sites to include in an expanded reserve network
across the contiguous USA. We considered sites with at least
50% of their area in protected status as protected. To identify pro-
tected areas, we used the Conservation Biology Institute’s
protected areas database [28], including all protected areas
with Gap Analysis Project (GAP) status 1 or 2 (electronic sup-
plementary material, figure S1). Lands with GAP status 1 or 2
are protected from conversion from a natural state and have a
mandated management plan to maintain a natural state.

To estimate planning unit-specific average costs of land
acquisition, we used the layer of county-specific land prices for
crops, pasture, forest and range (which includes both grasslands
and shrublands) described in Withey et al. [29] (electronic sup-
plementary material, figure S2). For each planning unit, we
calculated a weighted average cost, based on the current land
cover (National Land Cover Database 2001 land cover grid,
2011 edition [30]) within counties overlapped by the planning
unit. The land price estimates incorporated the present value of
future returns owing to development [29], but we also assumed
that urban land cover would not be targeted for conservation.
Network costs were estimated assuming 1000 ha of land would
be protected at each site selected to be included in a network.
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(c) Current and projected future climatic suitability
We inferred current climatic suitability with species distribution
models (SDMs) using presence-only occurrence data from the
Global Biodiversity Information Facility [31]. We identified
2237 species of plants, birds, mammals, reptiles and amphibians
with distributions that overlapped the study area and with at
least 25 occurrence records. SDMs were constructed with
MAXENT, with pseudo-absences randomly selected from locations
within an area 1.5 times larger than the extent of the occurrence
data. A taxon-specific prior based on target-group sampling was
used to account for sampling bias [32]. Model output was discre-
tized to predictions of presence/absence using a threshold that
maximized the sum of model sensitivity and specificity.

To identify species-specific refugia, we projected future cli-
matic suitability using the projections from three global climate
models (GCMs; INM-CM4 [33], MIROC5 [34] and GFDL-CM3
[35]), run for RCP 8.5, for the period 2061–2080 using data
from the WorldClim database [36]. Projections from three
GCMs were selected to represent mild, moderate and consider-
able change, respectively. We chose RCP 8.5 to explore the
higher end of projected changes. Thus, our resulting estimates
should be interpreted as higher bounds of spatial differences
and costs. To be considered species-specific refugia, sites had
to be projected to be climatically suitable across all three
climate-change scenarios and current climatic conditions.

We removed the most widespread species from the initial set
of 2237 modelled species, using only those with distributions
covering less than one-third of the area of the country. Removing
widespread species decreased the processing time without
significantly changing the solutions (e.g. costs of reserve net-
works with the full set of species were within 0.1% of those
with the reduced set). This produced a dataset of 1460 species
including 500 plants, 301 birds, 256 mammals, 206 reptiles and
197 amphibians.
(d) Connectivity
We defined climate corridors using an existing connectivity
analysis conducted for the contiguous USA [37] (electronic sup-
plementary material, figure S3). The analysis involved
identifying pathways that connected warmer to cooler areas
that were less impacted by human activities. These pathways
both avoided human impacts on the landscape and the crossing
of steep climatic gradients, thus producing routes that avoided
passing through areas likely to be climatically unsuitable [38].
The routes were based solely on existing climatic gradients
using climate data mapped at 1 km resolution [39]. The level of
human impact on the landscape was based on two existing
layers that incorporated a combination of land-use, roads, road
use, population density, coastal access, railroads, navigable
rivers and night-time lighting [40,41]. To include climate corri-
dors in selected protected area networks, we mapped these
routes to the 10 km grid cells and calculated the length of the
routes intersecting each grid cell. To ensure that we captured
contiguous corridors, we identified all pairs of cells sharing a
common route and prioritized the clustering of these cells in
the site-selection process.
(e) Climatic refugia
We used a map of climatic macrorefugia that identified locations
with future climatic conditions that are rare relative to their
historical distribution (electronic supplementary material,
figure S4). Specifically, for each location on the landscape, this
approach found all other locations with analogous climatic con-
ditions within a specified distance. These macrorefugia are
locations for which the number of climate analogues declines
in the future, indicating that those climatic conditions become
increasingly rare [23]. We used a binary, composite map that
included macrorefugia identified using eight different combi-
nations of dispersal constraint (i.e. analogue search radius) and
climate sensitivity (i.e. analogue threshold value). Refugia were
identified using the same three GCMs used to project species-
specific climatic suitability, RCP 8.5 and a 30-year average for
the end of century (2071–2100). These data were originally
mapped at 1 km resolution and resampled to a 10 km resolu-
tion using a majority rule algorithm. We selected all locations
consistently identified as refugia by all three GCMs.

( f ) Site selection
All of the protected area networks we selected were designed to
increase the protection of species across the USA. For the reserve
networks selected to protect areas of current climatic suitability
for species or species-specific refugia, we selected sets of pro-
tected areas to include a total of 50, 100, 200, 400 and 800 sites
for each species, respectively. Including a range of targets for pro-
tection allowed us to explore how differences in costs scaled with
target size and avoided the arbitrary selection of a specific target.
For species with fewer than the target number of sites with
climatic suitability, we required all suitable sites to be protected.

We explored the impact of including 20%, 40%, 60%, 80%
and 100% of the modelled climatic refugia in the reserve net-
works. To ensure that the refugia were distributed as equally
across the country as possible, we required representation at
each percentage within each level-2 ecoregion [42]—a total of
12 of 21 ecoregions contained refugia. Likewise, we explored
the effects of including 20%, 40%, 60%, 80% and 100% of the
total length of all identified corridors in the reserve networks.
Again, we required representation at each of these levels within
each ecoregion. Because the corridors were more widely spread
than the refugia, this involved protecting corridors in 21 ecore-
gions. To account for the fact that corridors often spanned
more than one site, we forced the reserve-selection algorithm to
prioritize sites that shared a common corridor.

All site selection was done with the conservation planning
software MARXAN [43]. MARXAN uses simulated annealing to
find sets of sites that protect the conservation elements—species,
refugia, corridors, in the present study—while minimizing the
total cost of the reserve network. For each type of reserve net-
work, we completed 100 MARXAN runs with 750 million
iterations each. To capture continuous sections of corridors, we
used the boundary length modifier in MARXAN. The boundary
length modifier allows the user to adjust the cost of shared
boundaries between sites. When shared boundary costs are
high, the algorithm favours sets of sites that are clumped. We
labelled only the boundaries between sites that shared corridors
as shared boundaries and used the boundary length modifier to
produce reserve networks that captured corridors as they tra-
versed sites. We explored the impacts of using a boundary
length modifier that ranged from 0 to 1000 to select a suitable
value for the two sets of networks involving corridors.
3. Results
We found that reserve networks designed solely to protect
areas currently climatically suitable for species failed to pro-
tect 14% of the species at the specified target levels based
on projected future climatic suitability. These tended to be
species with smaller distributions. Accounting for climate
change in protected area networks substantially altered the
distribution of selected sites (figure 1). Each of the four
approaches to addressing climate change required more
sites than did the additional protection of currently climati-
cally suitable areas. For example, to protect species-specific
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Figure 1. Maps of the relative importance of sites selected to protect (a) current species distributions, (b) species-specific refugia, (c) current species distributions
and climatic refugia, (d ) current species distributions and corridors designed to facilitate climate-driven species movements, and (e) species-specific refugia, climatic
refugia and corridors designed to facilitate climate-driven species movements. Values in the maps represent the number of times a site was included in 100 reserve
networks designed to include their respective targets while minimizing total cost of the reserve network.
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refugia, several sites were added across the country, particu-
larly in the northeastern, northwestern and central USA
(figure 2a). In addition, the importance of sites selected to
protect currently climatically suitable locations often changed
once future climatic suitability was considered. Only 45% of
sites selected based on current suitability were selected
with the same frequency in networks designed to also
capture future suitability (grey areas in figure 2a).

Protecting species-specific refugia—areas projected to be
climatically suitable for species today and in the future—
would cost 59% more than protecting species’ current distri-
butions alone (figure 3). This relative increase in cost grew
with increased levels of protection (figure 4). The cost differ-
ential occurs largely because once both current and future
species locations are prioritized, the number of site options
which can satisfy that requirement is greatly reduced (com-
pared to networks that only prioritize currently suitable
areas). On average, there were 66% fewer sites projected to
be climatically suitable, both currently and into the future,
for a species than there were sites projected to be currently
suitable.

Only solutions requiring protection of at least 40% of
climatic refugia had a discernable effect on site selection
because 26% of the refugia were already captured in the exist-
ing reserve network. Reserve networks requiring protection
of 100% of refugia added several sites to the networks, the
largest concentrations being in the southern Rocky Moun-
tains and the Colorado Plateau in the southwestern USA
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Figure 2. The difference in the relative importance of sites for (a) protecting
species-specific refugia and current species distributions (figure 1b,a),
(b) species current distributions and climatic refugia and solely protecting cur-
rent species distributions (figure 1c,a), and (c) current species distributions and
corridors designed to facilitate climate-driven species movements and solely
protecting current species distributions (figure 1d,a). Green areas are more
important for addressing climate change and pink areas are important for pro-
tecting current species distributions but are less important for addressing
climate change.
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Figure 3. Average costs of 100 reserve networks selected based on each of
five different approaches to addressing climate change in the conservation-
planning process (see table 1 for explanations of approaches). Error bars
span the minimum to the maximum costs across the 100 networks.
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(figures 1c and 2b). Costs were only slightly higher for includ-
ing 40%, 60%, 80% and even 100% of the refugia (figure 5).
Protecting all of the modelled refugia increased the cost of
the reserve networks designed to solely protect sites currently
suitable for species by 16% (figure 3).

Including 20% of the total length of corridors designed to
facilitate climate-driven movements resulted in numerous
additions to the reserve network and resulted in a more
evenly distributed set of sites throughout the USA (figures 1d
and 2c). Including these sites for corridors increased the cost
of the reserve networks by 17% (figure 3). Protecting
additional corridors increased network costs exponentially,
with a doubling of costs at somewhere between 60% and
80% of total length of corridors (figure 5b).
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4. Discussion
Species will respond to modern climate change by persisting in
place, moving to track suitable climates, or going extinct.
Expansion of protected area networks in and of itself may
allow more species to avoid extinction. However, without
explicitly incorporating climate change considerations, such
efforts are unlikely to protect all species effectively in the
future. In our analysis, expanding the contiguous United
States network based solely on species’ current climatic suit-
ability failed to protect climatically suitable areas in the
future for 14% of species. Our results also indicate that incor-
porating both current and future climatically suitable
locations would increase the costs by 59%. Further, adding
100% of the climatic refugia and 20% of the modelled climate
corridors would increase the cost by an additional 18%. How-
ever, requiring higher levels of protection (e.g. additional sites
with climatic suitability for each species) or more than approxi-
mately 40% of the modelled connectivity resulted in significant
cost multipliers. It is important to note that our cost estimates
are based on a relatively arbitrary decision to protect 1000 ha at
each site and that they do not account for differences in land
ownership. For example, one might want to protect more or
less land at a given site depending on species-specific needs
or logistical constraints and it might be less expensive to pro-
tect land already in the public domain. Thus, we caution
against reading too much into the dollar costs themselves
and focus on the relative costs here.

Climatic refugia identify locations most likely to facilitate
species persistence despite broad-scale climatic changes [15].
As the climate continues to change, many of the climatic con-
ditions in which species currently exist are projected to
disappear or become more scarce [23]. Fortunately, many of
the climatic conditions with shrinking footprints in the USA
are already protected. This protection is in part a consequence
of the historical conservation of many higher elevation sites
across the country—a pattern that has generally been seen
as problematic for efficiently protecting biodiversity [44]. In
the face of climate change, the higher elevation bias in the dis-
tribution of protected areas might prove to be beneficial—in
part, by protecting climatic refugia. Our results indicate that
capturing this particular type of climatic refugia will be rela-
tively inexpensive, making the protection of rare-climate
refugia a relatively low-cost adaptation strategy. That said,
there are other types of climatic refugia that are more
widely distributed, including both macrorefugia at broad
scales [17,21] and microrefugia at finer scales [45]. Conser-
ving these other refugia would probably be more expensive.

For species that need to move to track suitable climates,
the permeability of the landscapewill be critical. Theoretically,
by protecting species in locations that are projected to be cli-
matically suitable today and into the future, the networks
we designed should reduce the need for climate-driven move-
ments within the network. Nonetheless, individuals will need
to move to climatic refugia and to the new protected areas
from other parts of the landscape. By including climate corri-
dors, our goal was to increase the connectivity of the
landscape and not necessarily the connectivity of the reserve
network itself. Doing the latter would involve requiring the
aggregation of sites and/or the selection of corridors between
sites [27]. Although connecting the network would probably
improve the ability of species to track suitable climates, with-
out directly accounting for climate-driven movements they
might not do so. Ideally, a network will both protect species
where they are today and where they need to be in the
future and connect the routes they will need to take to track
suitable climates throughout the network.

The reserve-selection process required us to make a
number of relatively subjective decisions. We explored the
implications of some of these decisions by including multiple
target levels for species protection, refugia and corridor
lengths. In addition, we explored a set of scenarios in
which we used projected future climate suitability for species
from any of the GCMs (instead of requiring suitability across
all three) as well as refugia identified using any of the three
GCM projections (instead of requiring areas to have been
identified as refugia based on all three GCM projections).
As one would expect, given the additional flexibility in the
solution space, the resulting networks were more similar to
the historical networks than the results presented here and
the costs of the resulting networks were lower than the net-
works for species-specific refugia and climatic refugia
presented here. Nonetheless, the general patterns and con-
clusions drawn from these alternative analyses are similar
(electronic supplementary material, figure S5).

Although there are some similarities, the reserve net-
works identified in the present study differ substantially
from many of the areas identified in other recent prioritiza-
tions of lands in the USA for conservation [17,29,46]. These
differences are driven by multiple factors. For example,
some priority mapping studies use very different prioritiza-
tion approaches [29,46]; others do not use any type of
biodiversity data [17]; some do not address climate change
[29]; and others address climate change but avoid the use
of climate-change or climate-impact projections [46]. In
addition, of these studies, ours, to our knowledge, is the
only one that used projected current or future climatic suit-
ability of individual species. It is important to note that we
used a single species distribution modelling approach to pro-
ject climatic suitability—using a different type of model
would possibly alter the spatial patterns of the resulting net-
works. To that end, one should view these maps not as static
blueprints of lands to be protected but as guidance on how
and to where conservation priorities will probably need to
shift to address climate change. Maps such as these that
incorporate climate projections and multiple datasets need
to be regularly updated as new projections and data
become available and as additional lands are protected.

As our results indicate, protected area networks that are
not designed to address climate change will probably fail to
protect all species into the future. Incorporating climate
change into the conservation-planning process will geo-
graphically shift priorities and increase costs. The additional
cost, however, might be relatively modest compared to the
baseline costs of expanding reserve networks without
addressing climate change.
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